107 research outputs found

    Interactions between Senses: Updating on Neural Mechanisms and Behavioral Evidence

    Get PDF
    In recent years there has been a dramatic progress in understanding how stimuli from different sensory modalities are integrated among each other. Multisensory integration results in a unitary representation of the world that strongly characterizes perception and cognition in humans. The body of knowledge acquired so far on multisensory integration has been gained through several research techniques and approaches, including neurophysiology, experimental psychology, neuropsychology, neuroimaging, and computational modeling. This special issue aims at presenting an up-to-date overview of the research on multisensory integration. In particular, the proposed collection of papers features state-ofthe-art reviews or original articles about key themes in multisensory research, considering novel evidence on the physiological mechanism of multisensory integration at cell level, and on the behavioral effects of multisensory integration on perception an

    Action Shapes the Sense of Body Ownership Across Human Development

    Get PDF
    In this study we investigated, both in childhood and adulthood, the role of action in promoting and shaping the sense of body ownership, which is traditionally viewed as dependent on multisensory integration. By means of a novel action-based version of the rubber hand illusion (RHI), in which participants could actively self-stroke the rubber hand, with (Version 1) or without visual feedback (Version 2) of their own actions, we showed that self-generated actions promote the emergence of a sense of ownership over the rubber hand in children, while it interferes with the embodiment of the rubber hand in adults. When the movement is missing (Version 3, i.e., mere view of the rubber hand being stroked concurrently with one’s own hand), the pattern of results is reversed, with adults showing embodiment of the rubber hand, but children lacking to do so. Our novel findings reveal a dynamic and plastic contribution of the motor system to the emergence of a coherent bodily self, suggesting that the development of the sense of body ownership is shaped by motor experience, rather than being purely sensory

    Using non-invasive brain stimulation to augment motor training-induced plasticity

    Get PDF
    Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date

    Cathodal Occipital tDCS is unable to modulate The Sound Induced Flash Illusion in migraine

    Get PDF
    Migraine is a highly disabling disease characterized by recurrent pain.Despite an intensive effort, mechanisms of migraine pathophysiology, still represent an unsolved issue. Evidences from both animals and humans studies suggest that migraine is characterized by hyperresponsivity or hyperexcitability of sensory cortices, especially the visual cortex. This phenomenon, in turn, may affect multisensory processing. Indeed, migraineurs present with an abnormal, reduced, perception of the Sound-induced Flash Illusion (SiFI), a crossmodal illusion that relies on optimal integration of visual and auditory stimuli by the occipital visual cortex. Decreasing visual cortical excitability with transcranial direct current stimulation (tDCS) can increase the SiFI in healthy subjects. Moving from these issues , we applied cathodal tDCS over the visual cortex of migraineurs, with and without aura, in order to decrease cortical excitability and thus physiologically restoring the perception of a reliable SiFI. Differently from our expectations tDCS was unable to reliably modulate SiFI in migraine. The chronic, relatively excessive, visual cortex hyperexcitability, , featuring the migraineur brain, may render tDCS ineffective for restoring multisensory processing in this disease

    Paired Associative Stimulation drives the emergence of motor resonance

    Get PDF
    Abstract Background Associative plasticity, the neurophysiological bases of Hebbian learning, has been implied in the formation of the association between sensory and motor representations of actions in the Mirror Neuron System; however, such inductor role still needs empirical support. Objective/hypothesis We have assessed whether Paired Associative Stimulation (PAS), known to activate Hebbian associative plasticity, can induce the formation of atypical (absent in normal conditions), visuo-motor associations, reshaping motor resonance. Methods Healthy participants underwent a novel PAS protocol (mirror-PAS, m-PAS), during which they were exposed to repeated pairings of transcranial magnetic stimulation (TMS) applied over the right primary motor cortex (M1), time-locked with the view of index-finger movements of the right (ipsilateral) hand. In a first experiment, the inter-stimulus interval (ISI) between visual-action stimuli and TMS pulses was varied. Before and after each m-PAS session, motor resonance was assessed by recording Motor Evoked Potentials induced by single-pulse TMS applied to the right M1, during the observation of both contralateral (left) and ipsilateral (right) index-finger movements. In the second experiment, the specificity of the m-PAS was assessed by presenting a visual stimulus depicting a non-biological movement. Results Before m-PAS, the facilitation of corticospinal excitability occurred only during the view of contralateral (with respect to the TMS side) index-finger movements. The m-PAS induced new ipsilateral motor resonance responses, indexed by atypical facilitation of corticospinal excitability by the view of ipsilateral hand movements. This effect occurred only if the associative stimulation followed the chronometry of motor control (ISI of 25 ms) and if the visual stimulus of the m-PAS depicts a biological movement (human hand action). Conclusions The present findings provide the first empirical evidence that Hebbian learning induced by a PAS protocol shapes the visual-motor matching properties of the human Mirror Neuron System

    Bisecting Real and Fake Body Parts: Effects of Prism Adaptation After Right Brain Damage

    Get PDF
    The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive) information. In a previous study (Sposito et al., 2010), we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the midpoint of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real) left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation (PA) and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of PA, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury

    Sharing Social Touch in the Primary Somatosensory Cortex

    Get PDF
    SummaryTouch has an emotional and communicative meaning, and it plays a crucial role in social perception and empathy. The intuitive link between others’ somatosensations and our sense of touch becomes ostensible in mirror-touch synesthesia, a condition in which the view of a touch on another person’s body elicits conscious tactile sensations on the observer’s own body [1]. This peculiar phenomenon may implicate normal social mirror mechanisms [2]. Here, we show that mirror-touch interference effects, synesthesia-like sensations, and even phantom touches can be induced in nonsynesthetes by priming the primary somatosensory cortex (SI) directly or indirectly via the posterior parietal cortex. These results were obtained by means of facilitatory paired-pulse transcranial magnetic stimulation (ppTMS) contingent upon the observation of touch. For these vicarious effects, the SI is engaged at 150 ms from the onset of the visual touch. Intriguingly, individual differences in empathic abilities, assessed with the Interpersonal Reactivity Index [3], drive the activity of the SI when nonsynesthetes witness others’ tactile sensations. This evidence implies that, under normal conditions, touch observation activates the SI below the threshold for perceptual awareness [4]; through the visual-dependent tuning of SI activity by ppTMS, what is seen becomes felt, namely, mirror-touch synesthesia. On a broader perspective, the visual responsivity of the SI may allow an automatic and unconscious transference of the sensation that another person is experiencing onto oneself, and, in turn, the empathic sharing of somatosensations [2]

    Evidence of top-down modulation of the Brentano illusion but not of the glare effect by transcranial direct current stimulation

    Get PDF
    Transcranial direct current stimulation (tDCS) has been widely used for modulating sensory, motor and cognitive functions, but there are only few attempts to induce and change illusory perception. Visual illusions have been the most traditional and effective way to investigate visual processing through the comparison between physical reality and subjective reports. Here we used tDCS to modulate two different visual illusions, namely the Brentano illusion and the glare effect, with the aim of uncovering the influence of top-down mechanisms on bottom-up visual perception in two experiments. In Experiment 1, to a first group of subjects, real and sham cathodal tDCS (2 mA, 10 min) were applied over the left and right posterior parietal cortices (PPC). In Experiment 2, real and sham cathodal tDCS were applied to the left and right occipital cortices (OC) to a second group of participants. Results showed that tDCS was effective in modulating only the Brentano illusion, but not the glare effect. tDCS increased the Brentano illusion but specifically for the stimulated cortical area (right PPC), illusion direction (leftward), visual hemispace (left), and illusion length (160 mm). These findings suggest the existence of an inhibitory modulation of top-down mechanisms on bottom-up visual processing specifically for the Brentano illusion, but not for the glare effect. The lack of effect of occipital tDCS should consider the possible role of ocular compensation or of the unstimulated hemisphere, which deserves further investigation

    Conventional and HD-tDCS May (or May Not) Modulate Overt Attentional Orienting: An Integrated Spatio-Temporal Approach and Methodological Reflections.

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) has been employed to modulate visuo-spatial attentional asymmetries, however, further investigation is needed to characterize tDCS-associated variability in more ecological settings. In the present research, we tested the effects of offline, anodal conventional tDCS (Experiment 1) and HD-tDCS (Experiment 2) delivered over the posterior parietal cortex (PPC) and Frontal Eye Field (FEF) of the right hemisphere in healthy participants. Attentional asymmetries were measured by means of an eye tracking-based, ecological paradigm, that is, a Free Visual Exploration task of naturalistic pictures. Data were analyzed from a spatiotemporal perspective. In Experiment 1, a pre-post linear mixed model (LMM) indicated a leftward attentional shift after PPC tDCS; this effect was not confirmed when the individual baseline performance was considered. In Experiment 2, FEF HD-tDCS was shown to induce a significant leftward shift of gaze position, which emerged after 6 s of picture exploration and lasted for 200 ms. The present results do not allow us to conclude on a clear efficacy of offline conventional tDCS and HD-tDCS in modulating overt visuospatial attention in an ecological setting. Nonetheless, our findings highlight a complex relationship among stimulated area, focality of stimulation, spatiotemporal aspects of deployment of attention, and the role of individual baseline performance in shaping the effects of tDCS
    corecore